
Best practices running
an iOS open source

project on GitHub

Oliver Drobnik
 iOS Development & Consulting

@cocoanetics 
cocoanetics.com 

Full-time iOS developer and blogger  
since January 2010

Stars Forks

DTCoreText 2567 589
DTFoundation 462 120
DTBonjour 215 21
DTMarkdownParser 125 8
DTLocalizableStringScanner 96 19
AutoIngest 89 7
DTWebArchive 80 13
DTITCReportDownloader 78 2
DTDownload 60 8

44% off all books manning.com through Dec 3rd  
with promo code mobicftw

Tweet about my talk with #barcodes_iOS  
for chance to win one free copy  

http://manning.com

–Philip Stanhope, 4th Earl of Chesterfield, 
 in a letter to his son 1746

“Whatever is worth doing at all,  
is worth doing well.”

Open Source Wisdom

Worth doing?
• You develop an abundance mentality

• Others can add functionality outside of my own
needs if they fit with project philosophy

• Others can point out false assumptions, you learn

• Others can fix bugs only apparent in their apps

• Others can pay for using it without attribution

• Others can see the quality of your work

Worth doing well!
• A well-organized folder structure

• Integration options

• Documentation

• GIT Branching + Pull Requests

• Continuous Integration + Code Coverage

• Issues, Milestones, Beautiful Releases

WARNING: PERSONAL  OPINIONS

A Well-Organized 
Folder Structure

Project Root
• READ ME: Project overview, how to use

• LICENSE: Conditions for redistribution
for source

for apps

no warranty

copyright

Folder Structure

Core

Source

Resources

Demo

Source

Resources

Test

Source

Resources

Documentation Externals

Main Source

Core

Source

Resources

static library

resource bundle

Folder Structure

Core

Source

Resources

Demo

Source

Resources

Test

Source

Resources

Documentation Externals

Demo

Source

Resources

Demo App

Core

Source

Resources

static library

resource bundle

App

Folder Structure

Core

Source

Resources

Demo

Source

Resources

Test

Source

Resources

Documentation Externals

Test

Source

Resources

Unit Tests

Core

Source

Resources

static library

resource bundle

.xctest

Folder Structure

Core

Source

Resources

Demo

Source

Resources

Test

Source

Resources

Documentation Externals

Integration Options

Integration via GIT Submodule

1. Add GIT submodule in Externals of app

2. Add Xcode reference to module’s xcodeproj

3. Set user header search path

4. Link static library target from sub-project

5. Don’t forget -ObjC linker flag!

6. (If applicable) copy resource bundle

Integration via Cocoapods

1. Add 1 line to Podfile:  
 
pod 'DTFoundation/DTSidePanel', '~> 1.6.0’

2. First pod install creates Podfile.lock

3. Subsequent pod install uses locked versions

4. Any pod update updates Podfile.lock

Creating a Pod Spec

1. Core spec references 
 
spec.source_files = 'Core/Source/*.{h,m}'

2. Sub-spec references 
 
ss.ios.source_files = 'Core/Source/iOS/*.{h,m}'

3. Resource bundle reference  
 
spec.resource_bundles =  
{ 'DTLoupe' => ['Core/Resources/*.png'] }

4. Submit spec to CocoaPods trunk

Documentation

Why, oh Why?

• Document what you thought when creating these classes

• Clarify why purpose of public methods

• Documentation popup: Option+click on method name

• Autocompletion shows parameters and description

• Generate documentation to be installed in Xcode

• Generate HTML documentation to be put on your website

• Force yourself to have lean public interfaces

Class description

method  
description

Section

appledoc by Tomaz Kragelj

• Doxygen and appledoc mostly compatible

• Scans specified files for doc comments

• AppledocSettings.plist in project root

• appledoc -o /tmp .

• Enable “Documentation Comments” warning!

GIT Branching  
+ Pull Requests

A Successful Git Branching Model

• Google “successful git branching” for blog post

• develop branch for development

• feature branches for multiple-commit work

• releases via release-1.0 branch into master

• Tip: Set develop as default branch on GitHub

Regular Development

Pull Request Quality
• Travis-CI is free for Open Source

• Continuous Integration

• A fresh virtual build machine every time

• Builds on every push to any branch

• Builds pull requests and comments

Pull Request Quality
• Coveralls.io is free for Open Source

• Track changes in coverage

• Only useful if you have unit tests

• Coverage info is pushed by Travis-CI

• Adds comment to GitHub pull request

Obj-C Project
Install Coveralls pusher

Push coverage files“Docs Unit Test”

Build demo apps

1. Build Static Library
2. Perform unit tests
3. Collect code coverage data

Travis-CI Build File

Issues, Milestones,
Beautiful Releases

Tracking Issues
• Any problem: create an issue for it

• Use tags to categorise issues, assign to developer

• Pull Requests are issues, too

• Reference issue by # number in commits

• Group issues by release with milestones

“1.1.1”

Merging the Release Branch

Chores for Releases
• Do release branching stuff

• Update version number in pod spec

• Update change log

• Copy change log to GitHub release page for tag

• Announce the release on blog

• Merge master into develop and continue work

Summary
• Enforce organized folder structure

• Provide multiple integration options

• Document public headers

• Use successful GIT branching

• Let CI and Code Coverage track quality

• Track issues and make beautiful releases

@cocoanetics @productlayer

Thanks for watching!

